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https://www.youtube.com/watch?v=emYo7edGUrM
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Application to safeguards
Antineutrinos, due to their high penetration capability,
offer unique safeguards opportunities based on
spectral measurements:

� measurement of reactor power
� independent veri�cation of fuel burn-up

These measurements are performed on the whole
reactor core while the reactor is running.

Challenges

Power measurement can be done by established,
simpler methods

Core-wide burn-up is not measured in current
safeguards implementations
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Automobile analogy
speed thermal power

trip mileage burn-up
used gas produced plutonium

requires continuous speed mea-
surement, discrepancies show up at
refueling only

snapshot of used gas with-
out prior record, discrepan-
cies show up as you drive
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Reactor monitoring
In th 1970s Mikaelyanet al. proposed this.
Power monitoring

Korovkin et al., 1988

Fuel burn-up

Klimov et al., 1994

Recent results on fuel evolutionDaya Bay, 2017; RENO,
2018; DANSS, 2018con�rm our general understanding!
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The standard detector
4.3E29 target protons

No overburden

Irreducible cosmogenic back-
ground

How far have we come with
respect to the blue box detec-
tor (BBD)?

This is the “spherical cow” approximation. . .
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CHANDLER
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PROSPECT

PROSPECT is a 2D seg-
mented surface detector us-
ing Li-doped liquid scintil-
lator. PSD to reject cos-
mogenic backgrounds, signif-
icant shielding.
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DPRK 2018

Carret al., 2019
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Reactor status – near-�eld
Simplest thing to ask: Is the reactor on or off?

I use time to 95% C.L. detection based on a
PROSPECT-sized detector with PROSPECT
background, purely rate-based.

5MWe IR40 ELWR
1.2d 8 h 1.5 h

Time to detection at 95% C.L.

) Can be done with a xerox copy of PROSPECT.

NB – CEvNS: scaling from the CONUS presentation
at Neutrino 2018 indicates7:5ton years (!) of
exposure.
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Reactor status – mid-�eld

1950 U.S. Army topographic map

Yongbyon

450 m mountain (Yak-
san) at about 2 km from
the reactors.
� 300 m.w.e. overbur-
den possible at around
1 km distance, similar to
Daya Bay near detectors,
scale from Daya Bay,
2012.

5MWe ELWR
100 d 1 week

Time to detection at 95% C.L. for a 50 ton
detector of Daya Bay-like detector perfor-
mance.
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Exploiting the energy spectrum

315 days
45 days

Dc2=26.1
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This is based on the blue
box detector with zero
background.

Key to the capability to restore the continuity of
knowledge, unique to antineutrinos...
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The Nth month scenario

� Full inspector access for N-1 month

� Reactor shutdown in the Nth month
� Loss of the continuity of knowledge in the Nth

month

Reasons could range from technical glitch, over a
diplomatic tensions (Twitter!) to full scale diversion –
�nding out which one is the true one can make the
difference between peace and war.
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Iran
IR40 is a 40MW heavy water cooled reactor.

?

recovery of CoK
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D 270 days corre-
sponds to 93%
plutonium-239

An undeclared
refueling can be
detected at 90%
C.L. within 7
days.

blue box detector, zero background
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Reactor core swap detection
6 times PROSPECT' BBD, all times scale asm� 1.
BG level 1 corresponds to PROSPECT.

BG level ELWR IR40 5MWe
1 134 109 1154

0.5 83 59 830
0.2 56 30 637
0 45 16 527

Days to detection at 95% C.L.

This is based on a full
spectral �t and uses
the same analysis tech-
niques as used in our
prior DPRK and Iran
papers.

Modest background reduction yieldst < 90d,
but not for the 5MWe.
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Measuring in-core Pu mass
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The amount of neutrinos from plutonium per unit
mass of Pu depends on neutron �ux density:
graphite moderated, NU-fueled reactors have a very
low neutron �ux density.
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Spent fuel detection
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There is �ux from spent fuel
above IBD threshold.

Even decades after discharge.

Nearly all in strontium-90.

This would be very useful to �nd reprocessing wastes
! nuclear archeology, endgame of denuclearization.

Challenges:
rates are low and all signatures are below 3 MeV.
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DPRK example
8 kg of plutonium (1 SQ)
leaves about 2 mol of
strontium-90 in the waste
stream.

55 IBD events in BBD at
10 m in one year.

BG 1 SQ 10 SQ 100 SQ
0.01 1.7 0.024 0.00089
0.1 17 0.18 0.0024
1 170 1.7 0.018
Years to detection at 95% C.L.
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Safeguards summary
Antineutrino monitoring candetect a core swap
within a few months, even with demonstrated
background levels.

Antineutrino monitoring is non-intrusive and can be
performedin situ at a running reactor.

IAEA safeguards (INFCIRC/153 and 540)
probably not the right context.

Regional nuclear deals offer a better case.
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